Tedori-Callinan Lecture Series: 2013

Mary Boyce"Mechanics of Wavy Interfacial Layers in Hybrid Material Architectures:
Nature-inspired Design to 3D-printed Prototypes"

Presented by: Mary C. Boyce
Dean, The Fu Foundation School of Engineering and Applied Science
Morris A. and Alma Schapiro Professor
Columbia University

Tuesday, November 12, 2013
10:45 a.m.
Wu and Chen Auditorium, Levine Hall

Sponsored by Penn Engineering and Mechanical Engineering and Applied Mechanics. View past speakers in the series. Learn more about the sponsor of this series.


Many structured composites found in nature possess undulating and/or wrinkled interfacial layers that regulate mechanical, chemical, acoustic, adhesive, thermal, and optical functions of the material. Here, we study the role of the interfacial geometry and relative properties in governing the mechanics of the structured composite material architectures. Wavy compliant low-modulus organic seams that adhere stiff, mineralized skeletal structures, referred to as suture joints, are found to possess specific geometric waveforms including triangular, rectangular, trapezoidal and anti-trapezoidal as well as hierarchical structuring. Mechanics analyses reveal these waveforms to be tailored for particular loading conditions to provide advantages in load transmission and hence give desired stiffness, strength, toughness and damage tolerance. In a reversal of roles, relatively high modulus thin interfacial layers within a majority soft matrix tissue are also found to exhibit wavy geometries. The wavy geometry is a consequence of wrinkling of the interfacial layers and is reversible and tunable. Hence, modulation of wrinkling of the interfacial layers can be used to actively tailor and tune mechanical, acoustic, optical and chemical functions of the material. Analytical models, numerical simulations and experiments on 3D-printed prototypes are used to quantify the mechanics of the interplay between the composite geometry and inherent constituent material behaviors in governing the properties and functions of these natural hybrid materials.


Mary C. Boyce is the Dean of The Fu Foundation School of Engineering and Applied Science and Morris A. and Alma Schapiro Professor. Prior to joining Columbia, Dean Boyce served on the faculty of Massachusetts Institute of Technology (MIT) for over 25 years, leading the Mechanical Engineering Department from 2008 to 2013.

Dean Boyce has been widely recognized for her scholarly contributions to the field of Mechanics of materials, including election as a fellow of the American Society of Mechanical Engineers, the American Academy of Arts and Sciences, and the National Academy of Engineering. She also has been honored for her teaching at MIT, where she was named a MacVicar Faculty Fellow and received the Joseph Henry Keenan Innovation in Undergraduate Education Award. Dean Boyce earned her BS degree in engineering science and mechanics from Virginia Tech, and her MS and PhD degrees in mechanical engineering from MIT.